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Partial differential equations describing transport processes involving a significant effect of 
the flow velocity may be solved efficiently and easily, using a simple algorithm. The algorithm 
is based on the propagator(s) (or Green’s functions) for the equations of transport theory. 
The numerical method employed is always at least as fast as finite differencing, and it reduces 
to a finite difference method in the short time-step limit, but is especially etlicient in cases 
where flow dominates over diffusion and is consequently widely applicable in kinetic theory 
and fluid dynamics. Using this method, the ion distribution function and the potential in a 
plasma sheath were calculated in the presence of charge exchange collisions for a wide range 
of neutral densities. 0 1989 Academic Press, Inc. 

I. INTRODUCTION 

The numerical solution of the partial differential equations which describe the 
transport of fluids is usually accomplished by means of finite difference schemes 
[l-3]. For many such problems the finite-difference method is computationally 
expensive due to limitations placed on the time-step by the nature of finite 
differencing (the Courant-Friedrichs-Levy (CFL) criterion). In this paper, we 
present a method which completely removes the CFL limit for an important class 
of problems. 

To be more specific, the CFL limit arises because the various derivatives of the 
“density” n at a mesh point labelled i are usually evaluated in terms of the values 
of the density at the neighboring points, labelled ik 1. As a result, in advancing the 
solution at i through one time-step using an explicit scheme, the only information 
available as to the density elsewhere concerns conditions one mesh-space away 
from the point i. This in turn means that the rate of propagation of information 
across the numerical mesh is limited to one mesh-spacing, Ax, per time-step At. If 
the physical propagation rate exceeds this we have at best inaccuracy and at worst 
instability. 

To see why this limit is so restrictive, consider a problem in kinetic theory where 
we need to find the density in the phase space (x, u,). The mesh is now labelled by 
indices (i, j), corresponding to the values of x and u,, respectively. For simplicity 
we momentarily neglect the forces on the fluid, including collisions. Then 6, = 0, 
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and the problem is simply one of describing the fluid density evolving subject to the 
flow, with i z v,. 

If this problem is solved using finite differences, the fastest moving particles, 
having velocity + v,,, , provide the most stringent limit on the time-step, since the 
time-step must be chosen so that even they do not travel Ax in time At. In principle, 
then, At < AtCFL = Axfv,,,. The slowest moving particles require many such time- 
steps to move a significant distance. 

There is no fundamental reason why At must be so small. In earlier work [4] we 
treated a problem of the nucleation and growth of thin films using the propagator, 
Eq. (A3), in one dimension (the cluster size). The solutions were compared to those 
obtained from an exact propagator we found for the set of difference equations 
governing cluster growth. It was pointed out that the propagator was still valid 
when 6x > Ax, i.e., clusters grow by more than one atom per time step. This is by 
contrast with the conclusions of a previous study [S] of void growth in irradiated 
metals, which used the same propagator in one dimension, but implemented it 
differently and so obtained limits on the time step equivalent to the CFL criterion. 

The purpose of this paper is to present an approach to overcome the limitation 
which the flow velocity imposes on At. Implicit finite difference schemes go some 
way to overcome this problem, in that they do not normally go unstable, and so 
large steps may be used if accuracy can be sacrificed, which is sometimes acceptable 
if only the steady-state solution is needed. In general, however, they are subject 
to similar limitations as explicit schemes, if the time evolution of the system is of 
interest. This method is also much easier to use than an implicit scheme. 

In the next section we shall describe our method in detail. In Section III, we 
apply it to description of a plasma sheath, and in Section IV, we summarise the 
method. 

II. THE NUMERICAL SCHFME 

In this section, we develop the method to be used in this work. We begin with 
the simple example mentioned above where the only transport process is a flow 
with a constant velocity. Collisions are then added. In the next subsection we 
extend this to a more realistic flow involving variable velocities and collisions. We 
then describe the boundary conditions used, and finally we discuss the method in 
the context of other methods. 

A. Description of Simplgied Numerical Method 

In the kinetic problem considered above (and with d, = 0 still) we first decide on 
a time-step At which is appropriate on physical or numerical grounds other than 
the CFL criterion. The basis for this choice will be discussed presently, but we 
envisage that At $- AtCFL in our example. Particles in some representative cell will 
travel a distance 6x = u, At in this time, and the distance can be much greater than 
the mesh spacing; ~XB Ax. When the number of cells crossed is an integer, 
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dx/Ax = 6i, then the density n(i, j, t) is convected to the cell (i + Si, j) at time t + At, 
where 6i = u,(j) At/Ax. The new density is simply n(i + 6i, j, t + At) = n(i, j, t). 

When the number of cells crossed, Gx/Ax, is not an integer, the particles are 
spread between two cells. If Gx/Ax = 6i + 5, where 0 < 5 < 1, then a fraction c of the 
particles represented by n(i, j, t) are placed in the cell (i + 6i + 1, j) and a fraction 
(1 - 5) and are placed in the cell (i+ 6i, j), at the end of the time-step. The 
generalisation to a case where u, changes during At is illustrated schematically in 
Fig. la for an arbitrary pair of independent variables (x, y), so y should be inter- 
preted as u,, and I; = d, in this example. 

This procedure, which we shall refer to as a “convected scheme” (CS) reduces to 
an explicit finite difference scheme in the limit of very small time steps, i.e., time 
steps which obey the CFL criterion. In this case, hi = 0 and typically [ < 1. To see 
how the finite difference result is recovered, note that a fraction of the particles 
represented by n(i, j) have flowed to (i + 1, j) in At. That fraction is [ = Gx/Ax = 
u,(j) At/Ax, so the total density at (i, j) is decreased by n(i, j, t) o,(j) At/Ax, but 
added to by an amount n(i- 1, j, t) u,(j) At/Ax. Then the new density is 

n(i, j, t+ At)=n(i, j, t)+ 
n(i- 1, j, t) - n(i, j, t) 

Ax 1 u,(j) At 
which is the appropriate finite-difference equation. As we shall see below, this is a 
simple “upwind” scheme [6]. 

The effect of collisions is to further redistribute particles during the time step. 
This is handled in an intuitively appealing fashion by means of “propagators,” 
which are the Green’s functions for the short-time evolution of the distribution. The 
expressions given above are probably the simplest examples of propagators. The 
propagator p(x, uX, x’, u:, At) represents the probability of moving from (x’, u:) to 
(x, uX) in a time At. In terms of the mesh labels, p(i, j, i’, j’, At) is the probability 
of moving from the cell (i’, j’) to the cell (i, j) in time At. Then the new densities 
are given by 

4% 1, t + At) = 1 Nq, r, t) p(k 1, q, r, At). 
q.r 

(2) 

In our previous example with no collisions, p(k, f, k - 6i, 1, At) = 1 -c, and 
p(k, I, k - di- 1, 1, At) = [, and all others are zero. Equation (2) thus reduces to 
Eq. (1) in this case provided that 6i = 0 and [ 4 1. 

In practice it is not always convenient to implement the scheme in precisely the 
fashion implied by Eq. (2). Instead of evaluating all the contributions to the density 
arriving at a given point (the “postpoint”) we actually concentrate on a single 
“prepoint” until we have determined the fate of all the fluid leaving that prepoint. 
This is important if the propagators must be normalized. 

Charge exchange collisions will be treated in our example, and most other 
collision processes can be handled in a similar fashion. Coulomb collisions are 
discussed in the Appendix, but are ignored elsewhere in this paper. 
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In a general collision process, particles are scattered into a wide range of 
final velocities. We break the propagator into two parts, one representing the 
unscattered particles and one representing the scattered particles. Since the number 
of unscattered particles decays exponentially, we can calculate the contribution of 
unscattered particles for the case where u, =constant and the mean-free-path is 
n(v,). For propagation from the prepoint at (k, I) we have the contribution of 
unscattered particles 

p(k + 6i, 1, k, Z, At) = (1 - 5) e-6x’“(‘) (34 

to the postpoint (k + hi, I) and, similarly, 

p(k + &‘+ 1, 1, k, I, At) = je-‘““(‘) (3b) 

at the postpoint (k + 6i + 1, I); there is no contribution from unscattered particles, 
elsewhere. An expression such as this allows a large time-step, provided I$ Ax, 
which illustrates the sense in which convection must predominate over diffusion. 

There is also a contribution from those particles which did undergo collisions 
and which have been redistributed in u, in an as-yet unspecified fashion. Since 
collisions took place all the way from cell k to the cell (k + 6i + 1 ), the particles lost 
will in general be spread out in the same spatial range. 

An illustration of calculating the new velocity of scattered particles can be given 
for charge exchange collisions which result in new ions at the neutral temperature, 
Tn. In the example considered in Section III, T,, = 300 K, and the collisions result 
in a reduction of the velocity to essentially zero, so those particles which are 
scattered have their velocity set to U, = + AU/~, that is, they are added to the 
corresponding cell of the mesh at the spatial position where the collision occurred, 
which was in the range k to k + 6i + 1. (Our mesh straddles the u, = 0 axis. The 
number of spaces in u, is N, and the point NJ2 is at -AU/~; the point at NJ2 + 1 
is at + AU/~.) 

In the light of all this, we shall now give an explicit description of the fate of the 
particles initially in a cell (io, iO), for general velocities and accelerations and 
subject to charge-exchange collisions with cold neutrals (the case treated here). In 
doing so, we shall point out the limitations of the approach. The treatment of the 
equations of fluid transport using propagators is discussed in the Appendix. 

FIG. 1. (a) The simplest “convected scheme,” with constant flow velocities in x and y. A histogram 
is convected from its initial cell and redistributed amongst four “final” cells. In this paper, we use the 
independent variables (x. II,) so y = a, and $ is the acceleration 6,. (b) The propagator for diffusion 
in the presence of flow, based on a displaced Gaussian. A delta-function distribution, denoted by the 
vertical arrow on the left, flows to the position of the vertical arrow on the right, due to convection, and 
spreads out into a Gaussian, due to diffusion. 
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TABLE I 

Flow Chart of Numerical Method 

Unscattered Fraction kang the 

For That Initial Cell, Place 
Scattered Fraction in the 

Appropriate Final Cells 
(See Text) 

To the Appropriate Final Cells 

Replace the Old Distribution 
In Phase Space and Recalculate 

The Electric Field 

B. Description of the General Numerical Method 

We now explain the method in detail, for a realistic case, including acceleration 
and collisions (see also the flow chart in Table I). We begin by finding the final 
position of the particles which start in the cell (iO, j,) and which do not undergo 
collisions. The initial (x, u,) corresponding to (i,,, J,) are known, and the initial d, 
is found from the initial position (since the force, given in this case by E,(x), the 
electric field, is known). The final (x, u,) are found to the desired accuracy by a 
Runge-Kutta scheme or similar method. In effect, the Runge-Kutta scheme 
establishes appropriate averages along the computed trajectory of the velocity V, 
and the acceleration lj,, rCX=J v, dt, and r&=j dX dt. (As we shall see below, 
intermediate values of (x, u,) are also required and these are also obtained from the 
Runge-Kutta scheme.) In terms of Fig. la we use Rr V, and 3 = li, (since y 
corresponds to u,~). 
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The unscattered portion of the histogram can then be distributed amongst the 
four final cells, as illustrated in Fig. la, once the number scattered is known. The 
unscattered fraction is divided amongst the four final cells, with the fractions off,,, 
being distributed as 

(1 -Ml -v) in cell (i. + di, j, + Sj) 

(1 -ih in (i. + di, j, + Sj + 1) 

Ul -?I in (i,+di+ l,iO+@) 

5rl in (io+6i+ l,j,+&+ 1). 

(4) 

The next problem is to find the fraction of the histogram which is scattered, each 
time a spatial mesh-spacing Ax is crossed. The velocities found previously from the 
Runge-Kutta scheme at various points on the trajectory are used to estimate n(u,) 
along the trajectory. A fraction of the (remaining) particles (1 - e-dx’“(“x)) is scat- 
tered in each cell crossed. These are divided between V, = + Au/2 and v, = -AU/~, 
i.e., on either side of o, =0 (since the ions produced by charge exchange are 
considered to be “cold”), at the spatial position at which they were scattered, and 
the unscattered particles are handled as described above. 

As a result of this, the fraction of particles which are not scattered is 

(5) 

X is an appropriate average of the mean-free-path, such that 

6x Ax Ax Ax PAX T=1+T+ . . . +-+- 
1 2 A& IzSi+l’ 

where i, = n(u,,) and u,i is the velocity in the first cell crossed, etc. (In practice, ;Z 
will be essentially the same in many of the cells crossed.) 

Next, the flow of particles across the boundary into the region must be accounted 
for; this is discussed below in Section C. Finally, the electric field is recalculated. 
This completes the procedures involved in advancing through a time-step, and we 
will now discuss two issues related to the efficiency and accuracy of the method. 

The Runge-Kutta procedure is not necessary at low velocities since all the infor- 
mation needed to describe the step (intermediate and final values of (x, v,)) can be 
obtained sufficiently accurately without resort to the Runge-Kutta, provided the 
electric field is not very strong. At higher velocities typically only a low-order 
scheme is necessary. If greater accuracy is necessary, this is an indication that the 
electric field is strong enough to warrant a reduced time-step. The need for a 
Runge-Kutta scheme reduces the efficiency by a factor 5 2 relative to what might 
be expected on the basis of the time-step, since it leads to a duplication of a portion 
of the operations involved in taking a step. 



86 HITCHON. KOCH AND ADAMS 

When particles are replaced at low velocities after they undergo a collision, their 
subsequent motion during the time-step in which they were scattered is neglected. 
This is not necessary, but was convenient in this case. For most cases this is a 
reasonable assumption, as explained below. 

If vAt < 1 for the bulk distribution, then few scattered particles are created, so the 
error is small. Since 1 typically increases with energy, for energies of several tens of 
electron volts, this is often the case. If the scattered particles travel a distance vAt 
which is much less than a scale length L,, on which conditions vary, there is no 
substantial error, since those flowing out of a given cell are replaced by similar 
particles. (If oAt is less than a mesh spacing Ax there is no error, but presumably 
Ax < L,.) Finally, if At @ T, the typical time-scale on which the system varies, the 
method is accurate, since in the limit T is very large the scattering is performed on 
what is essentially a steady-state distribution and so the time when the scatter 
occurs is not critical. These last two statements are similar, in that we expect 
L, = VT, in many cases. If all of these conditions fail, then the system is not well 
resolved, either spatially or temporally, and At must be reduced. This would be true 
however we handle the collision processes, since if At N T, we cannot follow the 
evolution satisfactorily. 

C. Boundary Conditions 

The boundary conditions for the kinetic problem are straightforward; ions flow 
into the solution region at x = 0, v, 2 0 (see Figs. 3-6). Their distribution at x < 0 
(i.e., the particles which are flowing into the solution region) is specified externally. 
Any particles leaving at the edges in x, i.e., at x = 0 and x = L, are allowed to do 
so. The density near the boundaries in v, is negligible, so no particles leave at these 
edges. 

The ion flux in through the boundary must be handled separately from the main 
integration. We take the density at x = 0 and propagate it forward during a time- 
step; however, it is also necessary to consider those particles from x < 0 which enter 
the solution region in that time. Otherwise too few particles enter (and those that 
do, arrive in “clumps”). We achieve this by taking the density at x=0 and 
propagating it through z <At. We then add this to the density which arrived at 
x=0 in this time (i.e., the same density as before) and repeat the procedure, 
propagating the total density so created forward. The ion “injection” is thus 
described by a boundary term, which in general can be constructed using 
expressions (4~(6), with a sequence of N short time-steps of length z such that 
Nz = At, the step used in the main integration, and with a liner mesh than used 
ordinarily. This contribution to the density represents the ions which flow into the 
region being described during one time-step At, and so must be added to the 
density after each time-step. 

D. Discussion of the Numerical Method 
This method for following the time evolution of the density is straight-forward 

and intuitive to implement and very efficient. The increase in efficiency, however, is 



CONVECTION-DOMINATED TRANSPORT 87 

entirely dependent on the application; our specific example has an increase in speed 
N A?/AtCFL (assuming it takes as long to take a step by each method) and this is 
over 100 in the case we examine in Section III, at all but the highest collision 
frequencies. The limit on At could be set by the collision time (as mentioned above) 
or we may choose At to preserve accuracy in calculating the position in phase space 
to which the fluid flows. The method is extendable to arbitrary numbers of dimen- 
sions, with no additional difficulty in encoding. 

The CS was developed so as to combine the flexibility of Monte Carlo methods 
with the more complete description of the density provided by a finite difference 
scheme. Calculations which are essentially ‘Monte Carlo (or “particle”) methods but 
which in some sense provide a solution of the diffusion equation have been 
investigated in detail [9]. The distinction between those methods and the present 
work is essentially that we obtain solutions on a grid. The particle method is 
subject to statistical fluctuations which are not evident in a grid-based method. 

The numerical scheme which is closest in its intent to the CS is probably 
upstream (or upwind) differencing [6, lo]. It provides a solution on a mesh, by 
making use of the physical nature of the flows. A very simple upstream differencing 
scheme is given in Ref. [6]; for the equation 

an an 
z+az=O, a = const > 0. 

This is represented as 

n(x, t + At) = n(x, t) - la(n(x, t) - n(x - A, t)) 

(in our notation). This is identical to Eq. (1 ), when 1 is written appropriately; in 
other words, the CS reduces to an upwind scheme in the limit of small At. This 
scheme is subject to the CFL criterion [6] lad 1. Several explicit upstream 
schemes are discussed in Ref. [6]. The CS differs from these in that it does not obey 
a CFL criterion, since it does not rely on (explicit or implicit) finite differences. The 
failure of the accuracy of an implicit upwind scheme in a (stationary) flow/diffusion 
problem has been discussed by Arter [lo]. 

The CS advocated here is in one sense mathematically well known, since it 
essentially consists of performing a convolution integral. In the language of systems 
analysis, the propagator is an “impulse response.” The “signal” n(x, u,, t) is the 
input and the “output” is n(x, u,, t + At). The “system” which converts input to 
output and to which the impulse response refers consists of the phase-space 
trajectories of particles during the time At. Contrary to most systems applications, 
the convolution is over the phase space, S, instead of time (see Fig. 2): 

n(x, u,, f + At) = i n(x’, u:, t) p(x, u,, x’, vi, At) dS’. (7) 
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d,(x,t) 

d$.t)=d,(x,t)+ d,(x,t+At) \d,;;.t+A;/d3(x,t+At) 

dt(x,t+At)r d, (x,t+At)+ 

FIG. 2. Calculation of the time evolution of the distribution. 

Although numerical convolution is occasionally performed directly, it is usually for 
pedagogical purposes. Efficient evaluation tends to be performed by multiplication 
of the appropriate Fourier transformed quantities [ 111. Fourier transforms are not 
convenient in this case; the back-transform in particular would be cumbersome to 
perform. 

The link to general methods of solution of integral equations and Green’s 
function methods is also clear. The essential point of the CS is that it is a numerical 
realisation of Eq. (7) which exploits the full potential of the integral equation for 
problems where a suitable Green’s function can be found; in this paper our focus 
is on transport problems where convection is in some sense dominant. We are 
aware of no previous work (except our own preliminary study, Ref. [4]) pointing 
out how such an approach should be implemented, as we are attempting to do here. 

III. ION DISTRIBUTION IN A PLASMA SHEATH 

In this section we consistently obtain the ion distribution and the electrostatic 
potential in a plasma sheath, using as a boundary condition the distribution 
functions at the boundary between the sheath and the rest of the plasma obtained 
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by Emmert et al. [ 121. The plasma sheath is a region at the edge of a plasma where 
the plasma comes in contact with a material boundary. Under most circumstances, 
the steady-state fluxes of ions and electrons to this boundary must be (roughly) 
equal to prevent the buildup of charge. The fluxes are normally made equal because 
the electron flux initially exceeds the ion flux until a negative charge sufficient to 
repel most electrons builds up on the plate (or boundary). The sheath is thus a 
region of strong electric fields from which the main plasma is shielded by the mobile 
electrons. The fields decay spatially on a scale set by the Debye length, Lb, as a 
result of this shielding. 

The electric fields in the sheath thus accelerate ions to the plate (where we shall 
assume they are neutralised) and repel electrons. The electrons are nearly all 
reflected and confined to the plasma region, and so their density may be assumed 
to obey a Boltzman relation, n, = n,e q4’kT The calculation of the ion distribution . 
function is then the main problem, and this must be done consistently with the 
electrostatic potential set up. 

Most treatments of the sheath assume the sheath length to be zero or so short 
that it is essentially collisionless. Bohm [ 131 found the minimum kinetic energy for 
cold ions entering a sheath of non-zero length which was consistent with a 
monotonic potential, assuming a Boltzmann distribution for the electrons. A more 
complex set of assumptions was examined by Riemann [ 141, who used a two-scale 
analysis for the plasma and the sheath respectively. Riemann assumed Ti + T,, a 
constant mean-free path, I, for charge exchange interactions and L % I,, the Debye 
length, and found an analytic expression for the sheath potential drop that was 
contingent upon finding the ion distribution function at the plasma-sheath 
interface. (In this work, we use the distribution function found by Emmert et al. 
[12] for ions flowing into the sheath, as stated above.) 

The explicit evaluation of the distribution function usually necessitates a numeri- 
cal solution. Computer programs which find the distribution in a given field (see, 
e.g., Ref. [3]), have been developed, although the field is not evaluated consistently 
with the distribution. The case of a mono-energetic beam has been treated 
consistently by Whealton [ 151. 

The kinetic equation for the distribution function is 

(8) 

where f is the ion distribution function in (x, 0,). The propagator used is that 
described in the previous section. The exponential decay in Eq. (4) corresponds to 
the effect of the negative term in a collision operator C(f) s (f,,, - f j/z, where 
5 - I(u,)/u, and fM is a Maxwellian, such that n(x) = j f du, = l f,,, du,. Physically, 
this represents the charge-exchange collisions of ions with neutral atoms. The 
negative term -f/z is the rate at which ions are removed, and the positive term 
(which gives an equal rate when integrated over u,) is the rate of production of new 
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Te (K) - 10000. 
TI (K) -10000. 
Ldebye (cm) = 8.5*10F3 

FIG. 3. Ion distribution function, for T, = T, = 1 eV, 1, = 8.5 x 10M3 cm, n, = 0 plotted vs. (x, 0,). 
The plot shows log,&. 

ions, at the neutral temperature. The net result of collisions is to redistribute ions 
in v,, leaving x unchanged. 

Our method essentially allows a very efficient self-consistent evaluation of the 
distribution function in the sheath and the potential profile across the sheath, which 
would otherwise have to be calculated using a finite-difference scheme. A typical 
mesh employed (100 x 100) mesh spaces, in the velocity and spatial ranges shown 
on the figures. The calculations were performed on the CRAY I, and took 

Te (K) -10000. 
Tl (K) - 10000. 
Ldebye (cm) 10.2*10-3 
Oneutral (crne3) - 5.00*1012 

FIG. 4. As Fig. 3, with n. = 5 x lOI cmm3, 2, = 1.02 x 10m3 cm. 
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Te (K) - 10000. 
Ti (K) - 10000. 

10.0 Ldebye (cm) = 10.2* lo-3 
Dneutral (crne3) - 5.00*10 I3 

FIG. 5. As Fig. 4, with n, = 5 x 10” cmm3. 

5-10 CPU min for the electric field to converge (which was much slower than 
finding a solution for a given electric field). 

The distribution for a collisionless (n, = 0) case with Ti = T, = 1 eV, is shown in 
Fig. 3. For a grid with 100 mesh spaces in the x direction, the potential drop which 
was obtained agrees to within 1% with the value predicted by Emmert et al. [ 121. 
(See also Ref. [16].) This agreement illustrates that the CS is accurate. 

Te (K) - 10000. 
T1 (K) * 10000. 

10.0 Ldebye (cm) = 10.2* 10s3 
Dneutral (cm-3) - 1.00*10’6 

FIG. 6. As Fig. 4, with n, = lOI cme3. 
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0.0 

0.6 

1.8 

2.4 

3.0 

- 

--\ 

Ti (K) = 10,000 
- T, (K) = 10,000 

L debye (cm) = 1.02~10‘~ - 

\ Neutral Densitv (cmm3) 

1.2 2.4 3.6 4.8 
X (x0.01 Centimeters) 

6.0 

FIG. 7. Potential drop across the sheath, for various neutral densities. The lowest density shown is 
essentially a collisionless case. 

For the most collisional cases, analytic expressions describing the ion distribution 
at the sheath edge are not available. We employed results obtained by Scheuer and 
Emmert [ 171, who calculated the ion distribution function at the sheath edge using 
a BGK collision operator to numerically solve the kinetic equation, including 
(weak) collisions, in the presheath. We again took Ti = T, = 1 eV, but employed a 
wide range of neutral densities. A significant effect of collisions on the distribution 
function is evident at even the lowest neutral densities (Figs. 4-6) but the total 
potential drop across the sheath only changes markedly at high densities (Fig. 7). 

The higher density cases described here begin to approach conditions in some 
glow discharges. The exact ion distribution at x = 0 is not available in these cases, 
but is expected to be similar to that employed here. 
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IV. SUMMARY 

An efficient numerical treatment of fluid transport in the presence of strong 
convective flow has been described. The method employs propagators, which are 
accurate for time steps which are prohibited by the CFL criterion in finite-difference 
schemes, to describe the flow and in addition to describe the effects of collision pro- 
cesses and diffusion. A step-by-step illustration of the implementation of the method 
was presented, and its mathematical foundations were discussed. Conditions were 
specified for which the CS is most efficient; in the example studied, the efficiency 
gain versus an explicit scheme is of the order of 100, provided individual steps take 
about as long in either method, which is approximately the case. 

The method was applied to a problem in two independent variables, the kinetic 
treatment of the plasma sheath, in variables (x, 0,). The sheath calculation was 
performed for a wide range of neutral densities, using an energy-dependent collision 
cross section for ion-neutral collisions, and was shown to yield accurate results in 
the case where collisions were absent. 

APPENDIX 

In the discussion in the main body of the paper, the independent variables were 
(x, u,). However, the method is equally applicable in other independent variables, 
such as purely spatial variables (x, v). (The number of independent variables is also 
easily extended.) In this case, the flux of particles is usually a combination of a 
convective term and a diffusive term; 

r=nv--DVn. (Al) 

The equation of conservation of particles can then be written as 

an 
Z+V-(nv)-V(DVn)=S, (A21 

where S is the rate of production of particles, per unit volume. The velocity v and 
diffusion coefficient D are assumed known, in this discussion. 

To emphasize its generality, we now write the propagator for this equation in 
terms of independent variables (xi, x2). This is the solution of Eq. (A2) in an 
unbounded region when the initial distribution was a delta function at (xi,, x2& 

I-45 x0, At) = 
1 

27~ AtJmexp 
(x1 -x,0 - u1 At)2 + (x2 -x20 - u2 At)2 

2D,, At 2D,, At 

(A31 
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for a diagonal diffusion tensor such that Di2 = D,, = 0 (Fig. lb). This expression is 
a Gaussian centred on (x,~ + ui At, x2,, + u2 At), which is the solution of Eq. (A2) in 
the circumstances indicated above. Here u, -i,(x), u2 -i-,(x), where i=dx/dt. vi 
and vz are typically obtained at the start of the step, but can be found by interpola- 
tion, as discussed above. If v or D are not constant, Eq. (A3) is only approximate, 
and the step is limited to the region where they are almost constant. In the phase 
space (x, a,), x2 is ii, so u2 is Ti-, . The summation of terms (Eq. (2) or Eq. (7)) 
using Eq. (A3) is illustrated in Fig. 2. 

In highly ionised plasmas, collisions are predominantly Coulomb collisions, and 
so diffusion takes place in 0,; there is no spatial diffusion term in the kinetic equa- 
tion, so D,, = 0 and the propagator in the (x, u,) phase space becomes 

Ax, u,, xo, 0x0, At) = 
6(x - x0 - u, At) 

~SqTt exp 

- (u, - uxo - ti, At)’ 
20,” At > * 

(A4) 

This describes a flow in x, from x0 to x0 + o, At; in u, there is a flow to the point 
uXo + dX At and diffusion gives rise to a broadening, so this point is the centre of the 
Gaussian. 

Highly ionised plasmas are often “convection dominated,” and so the CS offers 
significant advantages over conventional numerical solutions of the kinetic equation 
c7, 81. 
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